S-duality - definitie. Wat is S-duality
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is S-duality - definitie


S-duality         
  • A diagram of string theory dualities. Blue edges indicate S-duality. Red edges indicate [[T-duality]].
EQUIVALENCE OF TWO PHYSICAL THEORIES UNDER WHICH THE COUPLING CONSTANT OF ONE IS THE INVERSE OF THE OTHER
Strong-weak duality
In theoretical physics, S-duality (short for strong–weak duality, or Sen duality) is an equivalence of two physical theories, which may be either quantum field theories or string theories. S-duality is useful for doing calculations in theoretical physics because it relates a theory in which calculations are difficult to a theory in which they are easier.
U-duality         
SYMMETRY OF M-THEORY COMPACTIFICATIONS THAT INCLUDES T-DUALITY AND S-DUALITY AS SUBGROUPS; THE SUPERGRAVITY THEORY U-DUALITY GROUP IS AN E-SERIES LIE GROUP, WHILE STRINGY EFFECTS BREAK IT TO A DISCRETE SUBGROUP
U-duality group
In physics, U-duality (short for unified duality)S. Mizoguchi, "On discrete U-duality in M-theory", 2000.
Matlis duality         
MATHEMATICAL THEOREM THAT, OVER A NOETHERIAN COMPLETE LOCAL RING, THE CATEGORIES OF NOETHERIAN AND ARTINIAN MODULES ARE ANTI-ISOMORPHIC
Matlis module; Macaulay duality
In algebra, Matlis duality is a duality between Artinian and Noetherian modules over a complete Noetherian local ring. In the special case when the local ring has a field mapping to the residue field it is closely related to earlier work by Francis Sowerby Macaulay on polynomial rings and is sometimes called Macaulay duality, and the general case was introduced by .